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1 Abstract

An overview of the current status of time depen

dent algorithms is presented. Special attention is
given to algorithms used to predict fluid actuator
flows, as well as other active and passive flout control

devices. Capabilities for the next decade are pre

dicted, and principal impediments to the progress of
time dependent algorithms are identified.

2 Introduetlon

Continuously expanding computer capabilities al
low more attention to be devoted to the simulation

of unsteady flows. At the turn of the millennium,
practitioners routinely compute complex 3 D steady

flows involving 106 107 grid points, and 2 D un
steady flows involving 105 106 points. These feats

are performed while carrying five or more variables

per node! If Moore's law persists (a fixed cost dou
bling of computer resources every 1.5 years) the next
decade will provide practitioners with the resources

to routinely simulate 3 D unsteady flows on 106 grid
points. This computer capability will enable the

burgeoning field of aerodynamic flow control (AFC),
which is often time dependent.

Active flow control offers the aerospace commu

nity the opportunity to expand the flight envelope

through the use of steady suction/blowing, zero net
mass synthetic jet actuators, or pulsed jets. These

flow control devices exhibit promising flow control
capabilities including separation control, thrust vec

toting, mixing enhancement, noise control, and vir
tual shape change. Benefits of flow control in

clude reduction in part card count, empty weight,
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manufacturing costs, operating cost, fuel burn, and
noise. A number of active flow control concepts have
been tested in the laboratory and flight. Examples

include leading edge suction for transition delay, 98
zero net mass separation control 123, 124, 125, 126, 127

and thrust vectoring fluidic injection, lll Cornputa
tional studies have demonstrated that Reynolds av

eraged Navier Stokes (RANS) methodologies pro
vide qualitative insight into active flow control ap

plications. However, quantitative agreement is lack
ing between the computational and experimental re

sults. To get from the bench top to real applications
of flow control, reliable computational fluid dynam

ics (CFD) design tools must be developed and val
idated with the experimental and flight databases.
An extensive amount of research is still needed to

develop a production type tool for active flow con
trol applications for the design engineer.

A critical assessment of the current capabilities of
time dependent CFD, and identification of impedi

ments that still exist is timely. We focus on identi

fying the critical areas (algorithmic and modeling)
that possess notable leverage to the success of 3 D
AFC computations.

The review of this material will be presented with

the following strategy. Each section will begin with
a broad overview of current state of the art in that

field, followed by a description of general bottle
necks, and specific impediments for time dependent

AFC computations. Finally, each section will con
clude with a brief summary of NASA Langley Re

search Center's (LaRC) present research aimed at
alleviating the bottlenecks, recognizing that some

impediments are not being addressed due to limited
resources. The fields of CFD and turbulence model

ing are nearly boundless[ To limit the scope of the
review, only those methodologies which have shown
promise in AFC simulations will be addressed.

The paper focuses on the general areas of algo
rithmic issues and turbulence models, and on the

specific area of fluid actuators. The paper is orga
nized as follows. Section 3 describes discretizations

in space and time. The section begins with a broad
discussion of the advantages of high order schemes,

followed by specific discussions of temporal and spa



tial discretizations. Section 4 describes algorithmic

considerations related to convergence acceleration.

Section 5 describes the current state of turbulence

modeling for time dependent flows. Section 6 de

scribes specific considerations for effective actuator

boundary conditions. Section 7 presents conclusions.

3 Diseretizations" Time and Space

3.1 Why High-Order?

For reasons of efficiency, high order schemes have

long been advocated for use in time dependent prob

lems. In 1002, Kutta recognized the virtues of inte

grating ordinary differential equations (ODEs) with

high order schemes. The following simple example

illustrates this point. Local error ei committed dur

ing one step of a temporal integration is described

by the formula

where p is the temporal order of the integration for

mula. Global error at time Tf is estimated by sun]

ruing all local errors after transporting each to the

final time Tf. Estimates of global error, though not

sharp, are generally expressed in the form 55

IlZll < (At)_....C(_.pEL(Tf To)] 1) (2)

where To is the initial tin]e, and C and L are problem

dependent constants related to solution smoothness,

etc. In equation (2) the time step satisfies At < 1,

and 8 given error tolerance can be achieved by in

creasing the order iv while increasing the time step.

The resulting algorithm is more efficient if any 8ddi

tional work accrued at each large time step, is more

than compensated by a reduced number of steps.

Work, however, increases with the order p. Near op

ritual values ofp in the range 3 _< p < 5 exist

for countless stiff and non stiff rnodd problems. (see

_IV.10 in Hairer and Wanner 56).

While it is generally recognized that high order

temporal schemes result in greater efficiency for

time dependent problems, it is less well appreciated

that higher order spatial schemes additionally con

tribute to time dependent efficiency! The virtues of

high order spatial schemes were first recognized and

quantified by Kreiss and Oliger. s3 To illustrate this

advantage we provide an overview of the original ar

gument presented in Kreiss and Oliger. 83

Consider the wave equation and initial data

u_+_G =0, v(.,0)=_"_ (a)

on the space and dine intervals 0 < x < 2rr and

0 < t < Tf, with the exact solution:

u(_, _) = _ _(_-_ 1) (4)

Assume a uniform grid xj = jAx with Ax = 2rr/N.

A general nl + n,. + 1 point spatial discretization is

1 nr

l=-- rz l

Substituting equation (5) into equation (3) and solv

ing the system of ODEs (Ut + MU = 0) in Fourier

space yields the modal solution

_?(_,t) = _ _("- _(_)_) (6)

where 6(k) is the wave speed of the semi discrete

problem and is related to the Fourier image of the

spatial operator. For example, the second and

fourth order central difference waves speeds are

6(k)2 = 2a sin(kAx)2 l_a. (7)

a(z_)_ = 20.8 _i,_(_A_)121_A._i,,(2_A_)(8)

For real a(k), the difference (error) between the ex

act and numerical solutions (eqs. 4 and 6) obtained

using trigonometric relations is _(k) = 2sin(k[a

a(k)]t/2). Expanding the error in small phase angles

yields the simple expression for the phase error:

_(l_) = I _ [a 6(t_)] * I (9)

Taylor series arguments produce the leading order

term for the difference in wave speeds

a(,_') __ a&(1,Z_) p (10)

with flf a scheme and order dependent constant.

Substituting equation (10) into (9), defining the

points per wavelength as P = N/k, and substi

tuting t = T/ yields

27r p

_(l_)__ [,#I_Tj(T-) ] (11)

The semi discrete solution error accumulates lit]

early with time Toe, and is a strong function of the

spatial truncation error. Rearranging equation (11)

in terms of a maximum acceptable target error eT (k)

yields the expression:

R__>2,,v _ (12)

The grid points per wavelength necessary tO achieve

the specified target error eT(k) increases for prob

lem size (2,7). The other dependencies rapidly de

crease as the order of the spatial approximation is in

creased, motivating high order spatial formulations



in timedependentproblems.Thecostofthecorn
putationsincreasewithincreasingorderofaccuracy,
anda globalminimumisreachedfor afinitevalue
ofp. KreissandOligerSasuggest4 _<p _< 6 for

problems of practical interest. Note that the optimal

order for spatial and temporal operators is similar.

In summary, error accumulates linearly in time.

The global error at Tf is the sum of local errors

that accumulate from each time step in the integra

tion. The local error at each time step is the sum

of three components: the temporal truncation error,

the spatial truncation error, and the algebraic er

for. A simulation requiring many time steps to reach

Tf requires extremely small local errors. High order

methods are the most efficient means of achieving

these smM1 local error tolerances.

An example will help to clarify this point. Con

sider a steady state problem requiring lift to an engi

neering accuracy of three significant digits. A second

order method could easily achieve this accuracy re

quirement. Now consider a similar time dependent

problem requiring lift. (at the specified T/) to an en

gineering accuracy of three significant digits. Fur

ther assume that 100 time steps are required to inte

grate from To to T/. The local error (temporal, spa

tial, algebraic) at. each time step must be less than

10 -a to achieve the desired error tolerance of three

significant digits. The constraint on spatial error

(10 -a) in the time dependent problem is much more

severe than that required for the steady state prob

lem (10-3). This example demonstrates the corn

pelling need for high order spatial operators espe

cially for time dependent simulations.

3.2 Temporal Algorithms

3.2.1 Overview

The application of method of lines (MOL) to time

dependent partial differential equations (PDEs) re

sults in an initial value problem (IVP) for a system
of ODEs. Dozens of excellent texts with detailed de

seriptions of multi step, multi stage, and linear multi

step methods have been written on the numericM

integration of ODEs. 2G, 4o, aa, a< 86, 128 After more

than 100 years of theoreticM development, the math

ematical framework for solving ODEs is relatively

mature. In a general context, it is doubtful that

dramatic (factors of 10) efficiency improvements can

come from new methods.

The potential for dramatic efficiency improve

ments is greater in the field of time dependent CFD,

where current methodologies are surprisingly primi

rive. This schism between tidy mathematical theory,

and rough CFD practices is not without good reason.

Fluids practitioners are preoccupied with more ur

gent issues such as algebraic solvers, dimensionality

issues, discontinuities, nonlinear instability, t.urbu

lenee models, grid generation, etc. Nevertheless, the

current objective is to identify mature technologies

in the ODE literature that could have an immediate

impact in CFD.

The hallmark of current ODE software is the abil

ity to perform automated integration for stiff ODEs.

The first widely available multi step integration li

brary was that developed by Gear, as later modi

fled and improved by Hindmarsh, 6° resulting in the

LSODE family of codes. Other variants have prolif

erat.ed over the past two decades to account for the

deficiencies of the original approaches (see VODE

61).

Automated integration begins with the user spec

ifying 1) the system of ODEs, 2) the system Ja

cobian, and 3) the desired solution error tolerance.

The software then automatically integrates the equa

tions, using the most efficient numerical method cho

sen from a variety of candidate methods (second

order backward differentiation formulae (BDF2) is

frequently used). A reliable solution error estima

tot allows variable time stepping. The time step is

adjusted to match the desired error tolerance. The

resultant nonlinear system of algebraic equations is

solved at each time step using a Newton or modified

Newton method. Direct matrix inversions are used

within the Newton methods whenever possible. The

algebraic error is reduced to a predetermined level,

a constant multiple below the specified error toler

ance. The Jacobian used in the nonlinear iteration

is periodically reevaluated and stored based on the

convergence rate of the iteration.

In contrast, the second order accurate multi step

BDF2 method is extensively used in the CFD corn

munity. System dimensionality prohibits the use of

direct inverse methods useful for Newton or modi

fled Newton methods. Iterative techniques such as

Newton Krylov methods are usually not as efficient

a.s other more highly tuned methods (multigrid or

combinations of methods). Error estimation or vari

able time stepping mode is not perceived as neces

sary (correct or otherwise).

Three technologies presently used in the ODE

community could have an immediate impact on

CFD:

• high order integrators :p _> 3

• error estimation/variable time stepping

• iteration termination strategies

To support this assertion, a brief summary of each

area is presented.



3.2.2 High Order Integrators

All general purpose solvers must integrate equa
tions of considerable stiffness. We begin with a

broad overview of stiffness, and identify the mathe
matical properties that enable a temporal integrator

to efficiently integrate stiff equations.
Consider the integration of the system of ordinary

differential equations represented by the equation

dU
_ s(u(t))dt

111 the present case, the vector S results from the

semi discretization (spatial and source terms) of the
equations of fluid mechanics plus a suitable turbu

lence modeh The integrator must integrate any S
with which it is provided. Numerical difficulties of

ten arise when the Jacobian of S, Y = cgS/cgU, has
large eigenvalues. A useful definition for stiffness

states that a problem is stiff when the largest eigen
value of the Jacobian J (scaled by the time step)

Ilz = A(At)l I contained it} the complex leR hall
plane (LHP) becomes much greater than unity. The
resulting stiffness is then governed by both the Jaco

bian and the chosen time step. Ideally, the time step
is selected solely based on error considerations and

a good method simply executes this step size in a
stable and robust fashion. Time integration meth

ods that do not amplify any LHP scaled eigenvalues
are called A stable. While A stability is generally
necessary, it is often not sufficient. We further de

mand that all eigenvalues Ilz _ ocll be completely
damped. The combination of these two properties,

A stability and damping of _c eigenvalues, is de
fined as L stability. General purpose solvers invari

ably rely on L stable methods (and the partially sta

ble L(a) methods with suitable error controllers) to
suppress temporal numerical instability and facili
rate convergence of the nonlinear equation solver.

Popular implicit ODE integration methods are
generally either distinctly multi step or multistage

methods. Each has different strengths and weak
nesses. Implicit multi step BDF methods compute

each U vector update to design order of accuracy
using one nonlinear equation solve per step. Unfor
tunately, they are not A stable above second order.

Additionally, they are not self starting and have di

minished stability properties when used in a vari
able step size context. (Stability proofs are formu

lated assuming constant time steps. Variable time
step cases may not be stable.) Practical experience
indicates that large scale engineering computations
are seldom stable if run with BDF4.1°2 The BDF3

scheme, with its smaller regions of instability, is

often stable but diverges for certain problems and

some spatial operators. Thus, a conservative prac

titioner uses the BDF2 scheme exclusively for large
scale computations due to its L stability rather than

L((_) stability.
Practical Runge Kutta (RK) methods such as ex

plicit, singly diagonal implicit, Runge Kutta (ES
DIRK) methods can be made arbitrarily high order

while retaining L stability but possess intermedi
ate U vectors with a reduced order of accuracy and
lesser stability. This reduced stage order may give

rise to order reduction phenomena in the presence
of substantial stiffness. ESDIRK schemes with s

stages require (s 1) nonlinear equation solves per
step. Achieving progressively higher stage order
methods is possible with fully implicit methods such

as the Radau IIA family. The cost of fully implicit

methods greatly exceeds that of ESDIRK methods
in the current context. Much less experience exists

with implicit RK methods than BDF methods in the
computation of large scale engineering flows.

The general formula for a k step, order ];', BDF
scheme can be written as

k--1

U(-+k) (Zt);_k S0_+k()13)
i=0

where n is the time step index. At each time step

the BDF involve the storage of t_+ 1 levels of the so
lution vector U, and the implicit solution of one set

of nonlinear equations. Stability diagrams for these
methods may be found in Hairer and Wanner. 56 At

order t_ > 2 an unstable zone for scaled eigenvalues
in the complex LHP exists. At orders {1, 2, 3, 4, 5, 6}

the methods are L(a) stable where a is given by
{90 ° , 90 ° , 86.03 ° , 73.35 ° , 51.84 ° , 17.84°}. (The dig

fusion terms yield negative real eigenvalues. The
convective terms discretized with nondissipative op

erators yield eigenvalues clustered on the imaginary
axis c_ = 90 °. Numerical dissipation and boundary

conditions displace both sets of eigenvalues into the
LHP. Spatial operators with high levels of dissipa

tion are more likely to be stable with BDF3.)
ESDIRK methods 7s, 85 are implemented as

k

u = u + (at)   ss(u0, = 1,
j=l

v = v + (at) (us) (14)
j=l

= u + bss (us)
j=l

where _ is the number of stages, akj are the stage

weights, bi and /)j are the main and embedded



schemeweights.ThevectorsU and l_I are the

pth order and (p l)_h order solutions at. dine level
n + 1. The vector U is used solely for esdmat

ing error and is calculated at little extra cost. ES
DIRK schemes differ from traditional SDIRK meth

ods (see §IV.6 in Halter and Wanner 5s) by the
choice all = 0, which permits stage order two meth

ods. The stiffly accurate assumption (asj = bj)

makes the new solution U '_+1 independent of any
ezplicit process within the integration step.

Many methods that combine multi step and multi
stage schemes, generally referred to as linear multi

step (LMS) methods, have been proposed in attempt
to overcome the problems of each. Surprisingly, the

results obtained with LMS methods (with a few ex
ceptions) have been disappointing compared with ei

ther multi step or multi stage schemes. Notable LMS
methods include the works of Cash. 34, 35 To increase

the stability of the BDF methods, Cash proposed the

extended backward differentiation formulae (EBDF)

and the modified EBDF (MEBDF) schemes. The
MEBDF schemes involve three stages to advance the
solution one time step. The first two stages are built

from existing (p 1) th order BDF formulas, while
the last stage combines the two previous BDF results
into a ioth order solution. Note that the second BDF

stage predicts a %uper future" point one time step

beyond the target time level, and substantially con
tributes to the A stability of the method. At orders

{1, 2, 3, 4, 5, 6} the methods are L(a) stable where a
is given by {90 ° , 90 ° , 90 ° , 90 ° , 88.36 ° , 83.07°}. The

machinery involved with implementing the MEBDF
algorithm is nearly identical to that involved in the
BDF formulations. MEBDF schemes have the ad

ditional advantage that very accurate solution data
are available on the first and third stages, based on

previous information. This information can be used
to provide the starting guess for the nonlinear it
eration, and to establish time step error estimates.

The second stage typically uses the trivial guess as

the starting point for the nonlinear iteration and no
error estimate is made.

Butcher 2s proposed a class of LMS methods for

stiff differential equations. The new methods corn
bine the properties of A and L stability, and are rea

sonably simple to implement. They have a stability
region that is identical to that of a RK method, but

have high stage order. Uniformly high stage order
eliminates the possibility of order reduction. The

new methods were identified by focusing specifically
on a diagonally implicit subclass of schemes referred
to as DIMSIMP 7

3.2.3 Error Estimation

Temporal error management in the CFD corn
munity is presently accomplished by systematically

halving the time step until the solution is indepen
dent of further reduction. This strategy, while ac

cornplishing the desired goal, can be streamlined by
using an error estimator at each dine step and ad

justing each time step to attain the desired error.
Error estimation is accomplished by comparing

two solutions of different orders (U _+1 and l] _+1)

at the same time step. For reasons of efficiency, the
auxiliary solution l) _+1 should be available at little

additional cost. For example, in ESDIRK schemes

(see eqn. 1/5), as well as MEBDF a5 schemes, both
_z+l r_+lU and U are constructed from available data.

The difference IIu _+1 0 _+111 is proportional to the
truncation error of the lower order formula 0 _+1.

The estimate predicts the magnitude of the error in

the solution, and gives insight into its overall qual
ity. Frequently, linear and nonlinear instability can
be predicted by the estimator well before the simu

lation diverges.

Figure (1) shouts the error estimate (MEBDF4)
for various At. The test problem is for periodic
shedding from the turbulent circular cylinder. The
estimates are accurate to the correct order based

on grid converged data. The error estimate predicts

that certain portions of the shedding cycle are more
difficult to resolve in time. Variable time stepping

could easily increase the efficiency of the calculation
by adjusting the time step so that the same amount
of error is produced at each time step.

Variable time stepping can introduce instability
into some temporal integrators. The stability func

tion of multi step schemes (BDF, MEBDF, LMS)
is derived assuming constant time steps. Large de
partures from constant step size can lead to solution

instability (although a good error estimator should

forewarn this possibility). Conversely, the stability

of multi stage schemes (ESDIRK) is independent of
variable dine steps, because they are sell'starting.

The dine steps in a variable time step formula
tion, are chosen by a controller. A simple explicit

controller is (see _IV.2 in Hairer and Wanner 5G)

Tol P

Similar yet more elaborate controllers exist for im
plicit formulations. The stability characteristics of

a controller can be tuned/optimized in conjunc
tion with the integration technique it is control

ling. Together, they should meet the design ob
jecdve and not introduce instability into the inte

gration. Note that in figure (1) the predicted error



at finer tolerances has a high frequency component

that the controller must suppress. (See Kennedy

and Carpenter 7s for details on the feedback error

controllers used with the ESDIRK scheme.)

3.2.4 Termination Strategy

An accurate error estimate can also be used to

automate the termination strategy of the nonlinear

iteration. Two competing components of temporal

error are the truncation and algebraic errors. Trun

cation error is related to At and the order of ac

curacy p, while algebraic error is the residual error

generated each time step by approximately solving

the algebraic system. The local temporal error is

the sum of the two components. To see full design

order from the temporal scheme, the algebraic er

for must be driven below the truncation error at

each time step. This requires an accurate measure

of truncation error, and must be provided by the

error estimator.

The iteration termination strategy is complicated.

Our experience indicates that design order temporal

convergence is achieved by maintaining a tolerance

ratio of 10 .2 < T < 10 -1. Here 7- is defined as the

ratio of nonlinear algebraic error to temporal inte

gration error at each time step (or stage). Algebraic

error for the nonlinear iteration is based on the L_

norm of the density residual. Choosing the time step

based on accuracy considerations alone may not be

the most efficient strategy for a temporal calcula

tion. Decreasing the time step can possibly greatly

increase the convergence rate of the nonlinear alge

braic system, thus increase efficiency. Gustafsson

and SSderlind 54 devised optimal criteria for adjust

ing At. They assumed that either fixed point itera

tions, or modified Newton iterations is used for solv

ing the algebraic system. The time step is adjusted

so that the iteration convergence rate approximately

equals the optimal value. Because typical CFD alge

braic solvers fall somewhere between fixed point and

modified Newton iterations, additional work to re

fine these estimates is needed in the context of CFD

time dependent solvers.

3.2.5 Bottlenecks

Algebraic solvers that exhibit poor convergence

behavior are an impediment for high order schemes.

Huge time steps are needed to utilize the favor

able aspects of high order formulations. Algebraic

solvers are needed that exhibits time step indepen

dent convergence characteristics. If the convergence

rate varies considerably with the time step, then it

may be more efficient to use a low order scheme

with small time steps. Thus, high order temporal

schemes need fast and robust algebraic solvers. Tur
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Figure 1. Time-dependent variation of predicted

L2 density error as calculated with the MEBDF_

scheme. The test case is turbulent flow around a

circular cylinder, at Re = 10 4, and 2_la = 0.2£

bulent cases that have little or no convergence (one

order of magnitude) present a second obstacle. A

small number of cases are extremely difficult to con

verge, yielding dubious solutions at best. Neverthe

less, solutions are still sought. It may be difficult

to keep high order formulations stable under these
circumstances.

A perceptual impediment is the implementation

of error estimation technology. A change in atti

tude about the nature of temporal error and the

importance of its control is necessary. In spite of

the perceived adequacy of existing temporal error

practices, the CFD community should immediately

adopt the practice of reporting a time step error es

timate as a necessary requirement of a high fidelity

time dependent simulation. Ideally, the estimate

should include the component of primary interest

in the simulation. For example, if lift and drag are

the object of the study, then the estimate should in

clude stepwise error estimates of these quantities, as

well as information on which formulas were used to

obtain the estimate.

Another common yet dangerous practice in the

CFD community is to use a fixed number of itera

tions for each time step. This approach eliminates

the need for an iteration termination strategy and

in most circumstances is satisfactory. Global tern

poral error [see equation (2)] strongly depends on

time steps with large local error. The error from just



onenonconvergenttimesteppotentiallycoulddomi
natetheerrorfl'omallothertimestepscombined!If
anintrinsicfeatureoftheflowsignificantlychanges
theconvergencerateof the algebraic solver, then a

fixed number of iterations is not a good strategy.

The periodic blowing fl'om zero mass fluid actuators

is a prime example. Different phases of the cycle

converge at different rates because convergence rate

is sensitive to boundary conditions. A termination

strategy that ensures a uniformly bounded algebraic

error at each time step is needed.

3.2.6 Langley effort

An ongoing effort focuses on the efficacy and effi

ciencies of several time integration schemes for the

unsteady compressible Navier Stokes equations. Ex

isting and newly developed multi step and multi

stage schemes are being studied, with particular at

tention to high order (p _> 3) schemes. Past work

includes comparisons of the high order (ESDIRK4)

r8 Runge Kutta scheme with first and second order

BDF on laminar problems. Bijl, et al. 2° showed that

the efficiency of the ESDIRK4 scheme exceeds that

of the BDF2 by a factor of 2.5 at engineering er

for tolerance levels (10 -s 10-2). Efficiency gains are

more dramatic at smaller tolerances. No problems of

nonlinear instability were noted with the high order

ESDIRK4 scheme on the problems tested.

Carpenter et al. 32 has shown that stage order two

Runge Kutta schemes are susceptible to order re

duction for stiff systems, although none is experi

enced for laminar problems with stiffness levels of

(9(108). However, turbulence models exhibit con

siderable stiffness at Reynolds numbers in the range

of 105 10 r. Significant order reduction is expe

rienced with ESDIRK4 for cases experiencing stiff

ness from strong turbulence fields. Ongoing stud

ies include investigating the efficiency of ESDIRK

schemes on other one and two equation turbulence

models.

Figure 2 shows the convergence behavior of the

ESDIRK4 scheme, the BDF2 and BDF3 schemes,

and the MEBDF4 scheme. The test problem is the

circular cylinder at Reynolds number 104, with a

Mach number of 0.25. The calculations are run

with the unstructured Fun2D code. 2 Design order

slopes are obtained for each scheme: 2, 3, 4, and

3 for BDF2, BDF3, MEBDF4, and ESDIRK4, re

spectively (note that we have accounted for the the

oretical order of ESDIRK4 in accordance with order

reduction). The MEBDF4 scheme was added to the

comparison because it is a stage order three method

and is not as susceptible to order reduction as the

ESDIRK4 scheme. Research continues on establish

ing reliable error estimators and iteration termina
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Figure 2. A comparison of temporal density error

obtained with BDF2, BDF3, MEBDF4, and ES'-

DIRI(_ schemes on a circular cylinder, with Re

= 104, and Ma = 0.25. The turbulence modal is

Spalart-Allmaras.

tion strategies. A comparison of efficiency will be

made between all integration schemes once each is

automated.

A final observation is relevant to help focus future

work. The BDF2 scheme yields engineering accuracy

if each temporal mode in a time periodic flow is re

solved with approximately 50 100 time steps. The

fourth order ESDIRK formulation attains a similar

accuracy (in spite of order reduction) using 5 10

time steps per period, with five stages per step,

yielding approximately 25 50 time samples/period.

State of the art LMS methods could lower this esti

mate to 15 30 time samples/period, an improve

ment of approximately 0(10 s/9) over existing tern

poral efficiency. The theoretical lower bound for

temporal schemes, based on infinite order Chebyshev

operators, is _r samples/period. High order schemes

are presently asymptotically close to this theoreti

cal lower bound. Another factor of three reduction

in samples/period is perhaps all that remains and is

becoming increasingly more difficult to attain. A1

gorithmic work focusing on other aspects of solver

technology will have a greater chance of producing

meaningful improvements during the next decade.

The next section describes high order spatial algo

rithms and their potential to increase the temporal

efficiency, and section (4) describes the current and

future status of algebraic solvers.



3.3 Spatial Algorithms

3.3.1 Overview

The spatial algorithms used currently in general

purpose aerodynamics solvers have not changed ap

preciably during the past decade. Most current pro

duction codes (structured or unstructured) rely on

some form of second order upwind formulation with

flux limiting to provide necessary robustness in the

vicinity of unresolved features in the flow. Excellent

texts describing these methodologies can be found

elsewhere. For finite difference methodologies see

Hirsch 62, 63, and LeVeque. s8 For basic finite element

methodologies see Hughes 70 Zienkiewicz and Tay

lot 149, 150 and Baker and Pepper. l°

In section 3.1, we established that spatial algo

rithms play a important role in determining tem-

poral efficiency. High order methodologies will sig

nificantly contribute to the ultimate goal of effi

cient, general purpose, time dependent aerodynamic

solvers. A broad overview of the spatial discretiza

tion landscape is now presented. Enabling technolo

gies that allow extension of high order methods into

the general purpose aerodynamic solver arena are

identified. A wealth of scientific literature supports

the assertion that high-order general purpose algo

rithms will likely mature within the unstructured

finite element framework within the next decade.

Spatial operators are categorized by the kind of

grids on which they are formulated: structured

or unstructured. A structured grid has large re

gions of the interior vertices that are topologically

alike, which results in well established connectiv

ity patterns. Accommodation of complex geome

tries requires an arbitrary subdivision of the struc

tured grid into what is referred to as a hybrid or

multi block formulation. Three examples of struc

tured codes currently used at Langley as general

purpose aerodynamics solvers include the block

structured TLNS3D, 144 and CFL3D, 142 and the

overset structured OVERFLOW r2. An unstruc

tured mesh is one in which vertices may have ar

bitrarily varying local neighbors. Three examples

of unstructured codes used at Langley (ICASE) are

USM3D 49, FUN3D 2, and NSU3D. 94 The distinction

between structured and unstructured meshes usu

ally (although not necessarily) extends to the shape

of the elements: 2 D structured meshes typically use

quadrilaterals, while unstructured meshes use trian

gles, with similar analogous element shapes in 3 D

(hexahedra vs. tetrahedra).

Structured solvers offer simplicity, easy data ac

cess, and thus efficiency. The data structure and

algorithmic simplicity of structured solvers leads to

more efficiency and lower memory requirements for

a given accuracy tolerance. A discrete derivative

requires simple increments/decrements in array in

dices, in stark contrast to an unstructured formu

lation. The structured advantage in CPU time and

memory can be as much as a factor of three on prob

lems not requiring significant grid adaptation. How

ever, on a complicated geometric domain a struc

tured mesh may require many more elements than

an unstructured mesh, because elements in a struc

tured mesh cannot vary in size as rapidly. Struc

tured grid generation approaches are far from being

fully automated, and require user guidance in the

decomposition step. A complicated 3 D structured

mesh can take a month to generate. The current and

future role of structured formulations is for repeti

rive computations late in the design cycle where grid

templates might exist and grid generation and adap

ration are not important components in the solution

process.

Unstructured meshes offer flexibility in fitting

complicated domains, rapid variation from smM1

to large elements, and relative ease in refinement

and de refinement. Unlike structured mesh gener

ation, unstructured mesh generation has been au

tomated in mainstream computational geometry for

some years. The major approaches for generating,

refining, and improving unstructured meshes rely

on unconstrained and constrained Delaunay trian

gulation, quad trees algorithms, or combinations of

the above. 19 A highly effective combination of tech

niques for high Reynolds number flows is an advanc

ing layers method (ALM) s14 in the near wall re

gion, and an advancing front method (AFM) 9s in

the far field. Highly stretched viscous grids can be

generated in a reasonably automated fashion with

this approach. Automation begins to break down as

aspect ratio increases on complex geometries.

Element shape has a profound impact on the accu

racy and efficiency (direct and indirect) of a formu

lation. Meshes with unintended large aspect ratio

cells lead to both poorly conditioned matrices and

poor solution accuracy. Poor solution accuracy re

quires more grid points for a given accuracy. The

additional cost of fixing a bad mesh can usually

be mitigated by the faster convergence of the iter

ative solver, lr Babugka and Aziz r showed that con

vergence on triangular elements is achieved only for

angles bounded away from 180 °. This rather weak

condition becomes an issue for strongly anisotropic

meshes used in high Reynolds number turbulent

Navier Stokes simulations. Near wall aspect ratios

on these grids can be in the range 104 105. For

mulations typically try to limit the maximum an

gle in a grid (for example 179 °) even though cur



rentevidenceisdividedonthenecessityofthiscon
dition. Quadrilateralandhexahedralmesheshave
anadvantageinaccuracyovertriangularandtetra
hedralmeshesfor theseproblems.Thefacesof
hexahedralelementsin theboundarylayerareei
theralmostparalleloralmostorthogonalto thesur
face.Shockfrontsandshearlayers,whicharealso
stronglyanisotropic,requirehighaspectratiocells
forwhichthedirectionandlocationcannotbepre
dictedin advance.Generationof these meshes can

be difficult.

General purpose aerodynamic solvers have pro

gressively shifted from hybrid/structured methods

to unstructured formulations over the past decade.

The principal motivations driving this change are

grid generation on complex configurations and grid

adaptation. These compelling reasons are likely to

become more important during the next decade, par

ticularly as the grid adaptation field matures for

time dependent simulations.

A large amount of inertia persists in the struc

tured grid world, which is not entirely counterpro

ductive. A time dependent niche exists for computa

tionally efficient formulations over the next decade.

Unlike 3 D steady state computations, realistic 3

D time dependent computations are presently con

strained by processor speed rather than memory re

quirements. The increased efficiency of structured

methods is a notable advantage when run times can

be decreased by a factor of two to three. The addi

tional hybrid/structured grid generation time can be

amortized if a calculation is likely to run for months.

a.a.2 High Order Spatial Operators

High order spatial operators need fewer points

than second order operators, to resolve the same in

formation. The exact reduction strongly depends

on the desired accuracy. Steady state problems re

quiring an accuracy of three significant digits can be

achieved with fourth order schemes in half as many

points in each spatial dimension. The total reduc

tion in the number of points is approximately O(101)

in 3 D. Time dependent simulations that require so

lution accuracy to four or even five significant digits

at each time step, will favor high order formulations

to a larger degree. High order spatial methods can

increase the efficiency the time dependent simula

tions by O(10 s 102).

The constraints necessary to expedite grid gener

ation and grid adaption will guide the next genera

tion of high order solvers. High order methods must

move beyond proof of concept and into the realm of

being tools used to increase the efficiency of aerody

namic solvers.

The implementation of high order methods is

strongly dependent on whether the grid is structured

or unstructured. High order finite elements (FE) are
natural candidates for structured or unstructured

meshes, while high order finite difference (FD) tech

niques are usually implemented on block structured

or overset grids. Finite volume (FV) techniques ex

ist in both forms; a close similarity between linear

element FE methods and FV methods exists. All

three approaches solve different forms of the govern

ing integral equation. FV directly solves the integral

equation by approximating the numerical fluxes. FD

solves the divergence form of the integral equation

by approximating the derivatives. FE take the di

vergence of the integral equations, multiply by an

arbitrary test function, and integrate by parts. The

solution itself is the resulting approximation.

Not all current general purpose spatial discretiza

tion algorithms are natural candidates for high

order extensions. For example, based on 2 D re

sults. Casper and Atkins a6 noted that a 3 D hy

brid/structured essentially nonoscillatory (ENO)

FV formulation would be extremely expensive to

implement relative to comparable FD techniques.

Barth and Frederickson *2, and Barth sa extended

their unstructured FV solver to account for bexact

reconstruction. They note that comparing quadratic

with linear reconstruction on a triangle requires

roughly quadruple the number of solution unknowns.

All high order formulations require more work than

second order formulations, but some are more effi

cient than others.

Many different approaches to high order FE have

been adopted in developing numerical schemes to

solve the compressible Euler equations. Two major

classes have emerged as candidate schemes: 1) sta

bilized methods (continuous across interfaces), and

2) discontinuous methods (discontinuous across in

terraces).

Standard Galerkin FE dis

cretizations of convection dominated Navier Stokes

equations produce wildly oscillating solutions un

less dissipation terms are added to the formulation.

Since the early 1980s stabilized FE methods have

become increasingly popular in CFD. Early devel

opment motivated by the success of upwind FD/FV

schemes included the streamline diffusion finite el

ement Method (SDFEM), 6s, 75 which later evolved

into the streamline upwind Petrov Galerkin (SUPG)

scheme of Brooks and Hughes. 25 A stabilizing term

is added into the weak statement motivated by in

viscid terms and results in a perturbed standard

Galerkin test function. The stabilization creates

an upwind effect by weighting more heavily the up



streamnodeswithineachelement.HughesandTez
duyar_9generalizedtheSUPGmethodtofirstorder
hyperbolicsystemsandincludedworkontheEuler
equation.TheoriginalSUPGformulationsuffered
fromoscillation in steep gradient regions (shocks)

which led to the introduction of entropy variables

and ultimately to stabilization terms including the

effects of both the inviscid and viscous terms in their

Galerkin least squares (GLS) formulation, rl A vari

ety of methodologies have been proposed to provide

additional stability to the convection terms, mono

tone discrete solutions and ease of implementation.

Another approach that has been gaining in pop

ularity in recent years is the discontinuous Galerkin

(DG) method. The DG method originally intro

duced by Reed and Hill ssr exhibits several distinct

advantages when applied to complex unstructured

grids. Local polynomials are used to represent the

data to arbitrary order, with the data on element

interfaces treated as discontinuities. The approach

is advantageous because the solution accuracy is rel

atively insensitive to mesh smoothness and can be

extended to arbitrarily shaped elements. In 1986,

Johnson and Pitkarata 7_ proved that the conver

gence rate of the method is (Ax) k+*/2 for general tri

angulations. The method generates a local mass ma

trix that can easily be inverted, making the method

efficient for explicit time integration. An entropy

inequality for any scalar nonlinear equation 7a ex

ists, implying discrete nonlinear L2 stability for dis

continuous solutions. (This assumes wellposedness

and boundedness of the continuous nonlinear prob

lem.) Several researchers have demonstrated super

convergence with DG. ar Lowrie et al. 92 obtained

convergence rates of 2p + 1, and Hu and Atkins _r

showed that the dispersion of the DG method is gov

erned by 2p + 1 for polynomials of order p. The DG

formulation produces a matrix with many dense but

small sub matrices weakly coupled to their neigh

bors. Algorithmically, this matrix structure excels

in a parallel environment and has high cache effi

ciency. Atkins and Shu _ developed a quadrature

free approach that allows the precomputation and

storage of much of the algorithm, thereby increasing

the efficiency.

In the early 1980s, the/> and the hp-FEM meth

ods were introduced by Babugka, and Szabd s. They

showed that for elliptic problems exponential conver

gence could be achieved with the h/>FEM method.

The degree of the approximating polynomial can

vary by elements so both grid refinement and order

refinement are used simultaneously to attack solu

tion error. The methods show design order for p

fixed in the limit h _ 0, and convergence for h

fixed p , oo. The behavior for high Reynolds num

ber Navier Stokes equations is less clear; neverthe

less the h/>FEM methods have great potential in the

context of complex geometries and grid adaptation.

High order FD excel in their simplicity and effi

ciency, and in the richness of linear and nonlinear

algorithmic permutations that can be formulated.

The Achilles heels of FD are "boundaries" and %ta

bility".

Achieving numerical stability near boundaries

with high order FD stencils is difficult. This insta

bility is closely related to the classical Runge oscil

lations exhibited by high order polynomials on uni

form grids near the boundaries. The solution in both

cases is to lower the polynomial order, compress the

grid, or increase the stencil width. Gustafsson aa

showed that to maintain spatial design order accu

racy, the boundary stencil order must not deviate

by more than one from the interior order of accu

racy: fourth order interior stencils require boundary

closures of at least third order accuracy! Note that

in fluid dynamics applications, near wall regions are

precisely the regions were high order accuracy is de

sirable. In general, low order treatments for bound

ary closures are not an acceptable alternative unless

special near wall grid refinement is used to compen

sate for reduced accuracy.

Strand sat following the work of Kreiss and

Scherer, s4 partially resolved the boundary closure

dilemma by presenting constructive procedures for

developing stable and accurate boundary schemes.

Stability is ensured in an L2 norm using a dis

crete summation by parts (SBP) procedure. Car

penter et al. a° and Olsson ,09. ,s0 showed how to

impose the physical boundary conditions to pre

serve the SBP energy estimate. To date, bound

ary closures have been formulated for central and

upwind FD schemes and Hermitian compact FD.

FD schemes require smooth structured meshes that

are often difficult to generate on complex geome

tries. Multi block/overset grids relax the gridding

constraints, allowing piecewise smooth grids around

complex geometries, but create a new set of compli

cations. Conservation is a major concern on multi

block grids and is extremely difficult to achieve on

overset grids. Shocks and other discontinuities near

interfaces must be treated carefully to ensure correct

shock speeds and locations. In addition, interfaces,

like boundaries, can cause linear and nonlinear in

stability and lead to decreased levels of solver ro

bustness.

Multiple attempts have been made to overcome

the difficulties of complex geometries for high order

FD schemes. By far, the most common solution to
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ensure conservation and stability has been to reduce

boundary or interface accuracy. As a general rule,
this approach works well if little structure exists near

the boundary or interface. Solution accuracy in corn
plieated flow scenarios, however, is difficult to pre

dict. Carpenter, Nordstrom, and Gottlieb al, 10s, 107
have developed L2 stable interface conditions based

on SBP energy estimates. The interface points are
treated discontinuously through a penalty term and
provide conservative, high order solutions on multi

block grids. The only grid requirement is Co inter
face continuity between blocks, a mild restriction.

3.3.3 Bottlenecks

The major obstacle facing all high order spatial
discretization methods FE or FD, structured or un
structured, is nonlinear instability in the presence

of unresolved features. Shock and sliplines are no
table examples. The classical approaches to deal
with discontinuities in FD and FV are the addition

of local artificial viscosity and/or filtering, and total

variation diminishing (TVD) or limiting approaches.
Equivalent approaches exist in FE, though they are
termed %tabilization." The amount of added dissi

pation depends on the simulation objectives. Mono
tone solutions can be obtained with any formulation

at the expense of reduced accuracy. In principle, the
minimum amount of dissipation necessary for non

linear stability is advisable. Unfortunately, precise
mathematical theory does not exist to determine the

optimal dissipation. Thus, most approaches reduce
the approximation/flux/solution near the disconti

nuity to first order to achieve monotonicity and ro
bustness. Reduction to first order accuracy locally

results in the undesirable second order 53 global ac
curacy if a uniform h refinement is then performed.

Artificial dissipation/filtering approaches are
quite efficient and simple to implement in FD formu
lations. Unfortunately, they are often problem de

pendent, vary considerably on shock strengths, and
are often user" dependent. Although TVD and flux

limiting approaches maintain monotonicity near dis
continuities, they unfortunately degenerate to first

order accuracy near smooth extrema. (See LeVeque
ss for an overview of TVD techniques.)

Essentially non oscillatory (ENO) s7 and later
Weighted ENO (WENO) 90, 74 schemes were de

veloped to circumvent nonlinear instability. ENO
schemes choose the smoothest stencil from all avail

able design order stencils, thereby avoiding as much
as possible interpolation/differentiation across dis
continuities. ENO schemes have been extremely suc

cessful algorithms over the past 10 years for prob
lems where both discontinuities and features requir

ing high order spatial accuracy are required. See Shu

129 for a detailed account of ENO/WENO schemes

and their applications. The principal difficulty with
structured grid ENO schemes is their extension to

complex geometries. The mathematical foundations
for ENO/WENO schemes (bounded total variation

proofs, etc.) are predominantly based on periodic
or infinite domains, and are outside the context of

boundaries. ENO/WENO schemes can not be im
plemented at several points next to boundaries be
cause they do not have smooth data outside the

boundary to build high order non oscillatory sten
cils. The extension of ENO/WENO schemes to mul

tiple domains is complicated by numerous bound
ary interfaces throughout the domain. Another dig

ficulty with ENO schemes is that stencil searching
algorithms have stencils that %witch" sometimes ar

bitrarily, which makes convergence to steady state
difficult. Atkins s proposed a smoothly varying

stencil biasing technique to eliminate this problem.
Integer stencil shifts were not allowed in the ap
proach. In addition, WENO schemes that are a

smooth weighted sum of stencils in principle should
not suffer from this difficulty.

Durlofsky, et al. 47 and Abgrall 1 attempted to

overcome the geometric complexity problems by
building fully unstructured stencils using stencil

searching algorithms. Ollivier Gooch 108 suggested
using a least squares reconstruction approach for un
structured mesh ENO. Encouraging results were ob

tained for AGARD test case 1 with second through

fourth order ENO, although convergence problems
were experienced in the fourth order case.

The use of overset meshes is another approach
used to overcome geometric difficulties. Wang and

Huang 14s developed a compact ENO scheme and ap
plied it to a multi domain overset code. Boundary

issues with the ENO formulation are still present,
and additional complications of non conservation at
the interfaces exist. Wang et ah 145 partially address

the issue of interface conservation, but significant is
sues still remain for time dependent discontinuous
flOV_'S.

Most high order formulations are only guaranteed
stable on linear problems, and some cannot even

claim linear stability. The high order DG FE formu
lations can claim a stronger form of stability. Barth

14 and Barth and Chirrier is have designed humeri
cal fluxes that satisfy a nonlinear energy condition.
They assume a convex entropy extension of the Eu

let equations and bound the nonlinear "energy" of
the system for all time in terms of the initial data.

Simplified interface flux functions are derived to al
low this result. These results and others ss provide

an encouraging step towards nonlinearly stable for
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mulations that maintain high resolution.

Although theoretically advantageous, high order

spatial discretizations in their present form still have

several obstacles to overcome. Considerable work

has been devoted to these methods over the past

decade, yet few studies demonstrate the increased

efficiency of high order spatial discretizations for

general geometry aerodynamic simulations, includ

ing turbulence models. De Rango and Zingg 43, 44

address this specific question and achieve encourag

ing results for which high order methods give more

accurate solutions on a given grid. Additional work

needs to be done to demonstrate increased efficiency

for a given accuracy.

Geuzaine et al. s2 and Delanaye et al. 41 apply

the quadratic reconstruction FV scheme of Barth

and Frederickson .2 to high Reynolds number flows.

They achieve suitable convergence rates with gener

alized minimal residual (GMRES) and bi conjugate

gradient stabilized (Bi CGSTAB) algorithms, and

show second and third order convergence on irreg

ular and smooth meshes, respectively. They do not

compare the efficiency of second and third order for

mulations, but note that the quadratic method con

verges more slowly than the comparable linear re

construction. Delanaye and Liu 42 report significant

improvements in efficiency and accuracy in inviscid

2 D calculation over a multi element airfoil, compar

ing the quadratic and linear formulations. Results

in three dimensions are not as dramatic.

3.3.4 Langley Effort

Langley has had a strong presence over the last

decade in the following high order spatial disciplines:

1) structured grid FD, 2) structured grid ENO FD

and ENO FV, 3) unstructured grid DG FEM, and

4) unstructured grid SUPG FEM. The following in

formation is presented to summarize our experiences

and provide guidance when comparing the different

high order methods.

Table (1) can be used to compare the important

attributes of current high order formulations. Cat

egories are rated on a scale from one to five, with

five being the best currently available, and one be

ing a capability representative of 1980. The cate

gories are 1) complex geometry, 2) grid adaptation,

3) robustness (nonlinear), and 4) cost for a given

accuracy requirement. At some level, all categories

are closely related; however, we assume that each

is independent fl'om all others when assigning a nu

merical value. Specifically, the complex geometry

category rates the capability of each method to ac

commodate complex 3 D configurations. This cat

egory is closely related to the locality of the dis

crete scheme. Grid adaptation is used to attack so

lution error. The second category, grid adaptation,

describes each method's success on adapted grids,

including sensitivity to grid smoothness and ease of

grid generation. The robustness category describes

the robustness of the method for under resolved lea

tures and discontinuities. In simple terms, this cat

egory rate whether the code "runs" (converges for

steady state cases, and does not diverge in time

dependent cases) with minimal user support. The

cost category describes the cost of achieving a given

accuracy. It is assumed that the necessary grid has

been generated by whatever means are necessary in

each case.

The candidate schemes include two broad classes:

1) unstructured database schemes, and 2) semi

structured databases. We include the high order
FEM methods as unstructured methods because the

structure within each element does not present a sig

nificant burden on the flexibility of the method. The

unstructured candidate schemes are DG, SUPG, k

exact finite volume, and bexact ENO FV. The can

didate structured grid schemes are Upwind FD, Up

wind FV, and WENO FD. The numbers are sub

jective, and should only be used as a relative guide

for the purpose of comparing strengths and weak

nesses. In general, researchers hold strongly varying

opinions about the relative merits of each scheme.

Table 1: Comparison of high order schemes. Cat

egories are 1) complex geometry, 2) grid adaptation,

3) nonlinear robustness, and 4) cost for a given ac

curacy.

Method Geometry

Unstructured

DG FE

SUPG FE

k exact FV

LS ENO FV

Multi block

Upwind FD 3

Upwind FV 3

WENO FD 2

Adapt Robust Cost

5 5 3 2

5 5 2 3

5 4 2 2

4 4 4 1

2 2 5

2 3 3

1 5 3

4 Convergence Acceleration

A second algorithmic issue that contributes signif

icantly to the efficiency of the temporal algorithm is

the converyence rate of the algebraic solution algo

rithm. At some point in the solution process the

algebraic system

A _ = b (16)
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A -- At + DU (17)
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The matrix A is sparse. Equation (16) can be solved

either directly, or iteratively. The dimensionality of

£ is (9(10 7) for 3 D problems, which makes direct

methods uncompetitive with iterative solvers. Shur

complement methods can be used to attack equation

(16) by subdividing A into numerous subproblems

and interface conditions. Each subproblem is then

solved directly, but the interface conditions are dif

fieult (dense). (See Saad i20 fox" details.)

Iterative methods fall into two broad categories:

stationary and nonstationary, xx Stationary methods

can be expressed in the simple form

£k+i = B£k + 8 (19)

with the matrix B independent of the iteration k.

These methods are older, simple to implement, and

usually not very effective when used alone. Sire

ple methods used in fluid mechanics are Jacobi,
Gauss Seidel (GS), symmetric GS, successive over

relaxation (SOR), and symmetric SOR (SSOR). Nu

merous permutations of these methods exist includ

ing matrix reordering. (For details see Barrett et

al.ll). More powerful stationary methods include in

complete factorization ILU(k), and block factoriza

tion. An ILU(k) approxin_tately factors the original

matrix A using an LU decomposition with the level

of fill governed by the parameter k. Block factoriza

tion is motivated by tensor product grids (line data

dependencies) where implicit solves along directions

are efficient. Both are somewhat more expensive

than basic stationary methods, but have consider

ably faster rates of convergence. Implementation of

sweeping algorithms is complicated in a parallel en
vironn_tent.

Nonstationary methods involve information that

changes at every iteration. They are more recently

developed, more difficult to understand, and more

powerful. Commonly used examples in fluid me

chanics include conjugate gradient (CG), general

ized minimal residual (GMRES), bi conjugate gra

dient (BiCG), quasi minimal residual (QMR), and

bi conjugate gradient stabilized (Bi CGStab). These

methods update the solution in certain "directions"

by considering inner products of current residuals

and other Krylov space vectors arising during the

course of the iteration. (See Saad i20 for details).

On different problem classes, the convergence rate of

nonstationary methods varies considerably. Nachti

gal et ah 1°4 shouted that a class of problems exists

for which each of the aforementioned nonstationary

methods is a clear winner (in terms of efficiency),

and a clear loser (in terms of efficiency).

A preconditioner is a matrix used to rotate a lin

ear system into a new system that has the same

solution but is easier to solve in some sense. A

left preconditioner acts on equation (16) yielding the

new system,

M-* A aT = M-*b" (20)

where the new matrix M-SA is easier to solve.

The preconditioner changes the eigenstructure of the

original system into a more compact set of eigenval

ues that an iterative method can attack more effec

tively. Ideally, a preconditioner should change the

eigenstructure dramatically but at a n_dnimal ad

ditional cost. Simple preconditioners used in fluid

dynamics include the block aacobi, GS, and SSOR

methods. More powerful precondkioners include in

complete factorization ILU(k) and block factoriza
tion.

Multigrid, at least in terms of elliptic problems,

is a mechanism for rapid communication of mul

tiscale information3 a Multigrid methods are usu

ally defined as a strategy to accelerate any sta

tionary or nonstationary iterative procedure. The

solution is obtained on a sequence of grids, rang

ing from coarse to fine. Each grid smoothes the

high frequency components of the residual on that

grid. Restrictions and prolongations communicate

the data between grids. The resulting algorithm

rapidly communicates long wavelength data via the

grids, while damping short wavelength data by using

efficient local smoothing operators. The exact choice

of grid structure, restriction and prolongation oper

ators, and smoothers greatly influences the overall

performance of the procedure.

Multigrid methods are effective techniques for

accelerating convergence of elliptic and hyperbolic

problems. Convergence rates easily approach 0.1

per cycle on elliptic problems such as the Poisson

equation. The theoretical lower bound (if we rely

on coarse grid corrections) on the convergence for

hyperbolic equations is 0.75 per cycle for a second

order spatial discretization, and is routinely achieved

by general purpose Euler solvers. (See Molder s°3

for details.) The convergence rate suffers consider

ably for high Reynolds number (turbulent) viscous

flow solutions. The primary cause for this slow

down is the highly stretched wall normal grids used

to resolve turbulent boundary layers. Wall nor

real stiffness can introduce stiffnesses of the order

of 104 105. A secondary cause of slowdown is the

existence of significant regions of low Mach num
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berflowaroundstagnationpointsandin recircula
tionregions.A thirdcauseofslowdowncomesfl'om
theimperfectionsofrealisticgrids.Generatinggrids
that have107pointswithouthavinggridanoma
liesisdimcult.All generalpurposeCFDsolversad
dresseachoftheseproblemsultimatelyin thesame
way.Forwallanisotropies,semicoarseningand/or
directionalimplicittechniquespreconditionthewall
normalboundarystiffness.Low Mach number pre

conditioning is added in those regions of the flow

below a critical Mach number. Grid anomalies are

addressed with grid smoothing and movement algo

rithms in problem regions.

Solution techniques within the aerodynamics corn

munity are far from being "black box" algorithms.

Two decades of experience have shown that none

of these algorithms is well suited for solving broad

classes of high Reynolds number turbulent flows.

Practitioners rely on combinations of a wide vari

ety of methods including 1) modified Newton Krylov

methods, 2) algebraic multigrid methods and 3) ge

ometric multigrid methods, 4) defect correction it

eration techniques, and 5) sparse matrix methods.

Anderson et al. a compared the efficiencies of

several iterative strategies in the context of an

unstructured, 3 D incompressible, Navier Stokes

solver. Multi element airfoils and high lift sys

terns were used as test problems in 2 D and :3 D.

The turbulence model used was that of Spalart and

Allmaras. la2 GMRES was the Krylov method used

in the study, with Gauss Seidel or incomplete LU

decomposition used as a preconditioner. Newton

type solvers were shown to converge in the fewest it

erations. In terms of work and storage the multigrid

algorithms are the most effective means of reducing

the residual on the problems studied.

In spite of all the powerful iterative techniques

brought to bear on aerodynamic problems, the con

vergence rates for high Reynolds problems can ap

proach 0.98 per cycle. Mavriplis demonstrated the

capabilities of his unstructured code NSU3D 94 on

complex 3 D configurations. 95' 9G, 9r, as, 99, s00 The

features in NSU3D are among the most advanced

presently used in the CFD community. A wide va

riety of 3 D test problems was run including but

not confined to 1) a realistic high lift configuration

including a wing, pylon, and nacelle, 2) the trape

zoidal wing 99, and 3) an ONERA M6. Grids ranged

from 1 10 million vertices. Reynolds numbers were

in the 1 10 million range with wall normal spacing of

10 .5 10 .6 based on chord length. Published con

vergence rates for these cases ranged from 0.96 0.98

per cycle. Approximately 500 1000 nmltigrid cycles

were required to achieve residual levels converged to

engineering tolerances.

4.1 Bottlenecks

The convergence rates quoted in the previous sub

section are based on steady state solvers. The effi

ciency of time dependent and steady computations

are closely related, as the underlying nonlinear ma

trices are nearly identical. (The time dependent for

mulation converges slightly faster for time steps gov

erned solely by accuracy considerations). Thus, the

cost. of the unsteady calculations can be related to

that of the steady. Simple back of the envelope cal

culations reveal that at a minimum the unsteady

computation will be equivalent to the solution of 100

steady state problems each having the same compu

tational complexity. Dropping an equation residual

three orders of magnitude at a rate of 0.98 requires of

approximately 400 iterations. Thus, modifying the

convergence rate of the algebraic solution algorithm

has a profound effect on the efficiency of the tern

poral algorithm. An order of magnitude increase in

computational efficiency could be achieved by suc

cessful convergence acceleration efforts.

The convergence characteristics of high order spa

tial formulations has not been extensively studied.

The dissipation level of the spatial operator fre

quently affects the convergence rate of the alge

braic system, with more dissipation producing faster

convergence. High order methods inherently have

less dissipation, and could be more difficult to con

verge. An additional concern is the efficiency of

multigrid methods as spatial order increases. The

theoretical lower bound of multigrid methods (as

suming coarse grid corrections) on linear advection

is *¢, _> 1 1/2 v where _b is the convergence rate,

and p is the order of spatial approximation. Fourth

order methods should converge no faster than 0.9375

per cycle. Ollivier Gooch 108 used multigrid on

an unstructured high order FV scheme and expe

rienced increasing difficulty with convergence as the

order of the approximation increased. Delanaye et

a.1.41 notes that quadratic elements converge more

slowly than equivalent linear elements, when a differ

ence GMRES algorithm is used. Interestingly, Bon

haus 21 using SUPG with a Newton Krylov GMRES

method and diagonal preconditioning, experienced

no changes in convergence rate with increasing or

def.

4.2 Langley Effort

Current iterative nonlinear solvers require 0(10 3)

iterations to converge, based on high Reynolds num

bet (_ l0 G 107), turbulent, separated, 3 D, corn

plex geometry flows. Newton solvers converge these

problems in O(101) iterations if a reasonable ini
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tial guessis given. Currently,a groupat Lang
leyis studyingmethodsthatpotentiallyhavetext
bookmultigridefficiency(TME).29'2aMethodsthat
achieveTMEconvergeatratesthatareindependent
ofthenumberofdegreesoffreedom(grid),andcon
vergeto thetruncationerrorof thediscretization
in approximately101workunits. A workunit is
definedastheworkequivalentto theevaluationof
theresidual.Thus,TMEmethodshavea poten
tial increaseinefficiencyof O(102) compared with

existing state of the art solvers. The potential effi

ciency of TME methods relies the "factorizability"

property of the Navier Stokes (NS) equations. Split

ting the NS equations into factors decouples the sys

tern somewhat, and allows optimal (fast and inex

pensive) operators to be constructed for each por

tion. This "divide and conquer" approach yields

nearly optimal efficiency for the entire problem. The

Langley effort was showcased at the 2001 AIAA

CFD conference. 24, 45, s19, la0, la9 Work continues on

this revolutionary method to implement TME algo

rithms on general purpose aerodynamic solvers.

5 Turbulence Modeling

5.1 Overview: Current praetlees

An equally important aspect of temporal algo

rithms is the underlying turbulence models being
solved. Numerous turbulence models exist for at

tached steady turbulent flows. During the last two

decades great strides have been made in tuning these

turbulence models to increase their robustness and

generality. Practitioners routinely utilize these rood

els to predict the flow behavior of a surprisingly

broad class of complex problems with acceptable

confidence levels in their solutions. Unfortunately,

the same level of maturity does not exist for nonsta

tionary flows, where time averaged turbulence quan

titles inadequately describe the important dynamics

of the flow. Oftentimes, these flows are dominated

by large scale flow features that are not properly

modeled by conventional turbulence models. Plows

with massive separations such as bluff body wakes,

cavity flows, shock induced separations, and recircu

lation zones Mmost always fall into this category.

5.1.1 LES

In 1970 Deardorff a9 published the first results of

a large eddy simulation (LES). The objective of an

LES is to simulate, or directly compute, the large

energy containing fluid motions and to model only

the small scales that are unresolved by the grid (the

subgrid scales). A subgrid scale (SGS) model acts to

remove the energy associated with the small scales

and therefore facilitates the global energy transfer

from the large scales to the small scales. When prop

erly implemented, LES can be used to simulate the

turbulence in a flow at low to moderate Reynolds

numbers. For more complete discussions of the con

cepts and applications of LES see Piomelli ssS, s,6

and the references therein.

In an LES calculation, the smallest resolved scales

are determined by the grid cell size. On finer grids,
more of the flow is simulated and less is modeled.

The SGS model therefore has an explicit dependence

on the local grid cell size. This feature of LES has

led some to believe that the grid cell size is unre

stricted and simply corresponds to the break in re

solved and subgrid scales. This sort of thinking usu

ally leads to poor calculations. An important as

sumption in an LES calculation is that the energy

containing scales are actually simulated. To do this,

the peak in the energy spectrum must be in the re

solved range of scales and the cutoff between the

resolved and subgrid scales should be in the inertial

wavenumber range.

The development of dynamic subgrid scale mod

els for LES has motivated the use of LES on non

stationary turbulent flows over extremely complex

configurations. However, estimates of the grid re

quirements for LES computations over realistic ge

ometries at realistic Reynolds numbers indicate that

LES is not likely to be a viable option for most flows

for several decades to come. TM

5.1.2 URANS

Despite the abovementioned shortcomings of ex

isting turbulence models, most time dependent

codes use unsteady extensions of popular steady

state algorithms. These calculations are typically

referred to as unsteady Reynolds averaged Navier

Stokes (URANS). The turbulence models used in

URANS span the spectrum of available models.

HSld et al. 65 used a Baldwin Lomax model to

compute the unsteady flow about a rounded halt"

cylinder embedded in a flat plate. Their time

averaged pressure coefficients agreed reasonably well

with experimental measurements. Surface pressure

spectra, however, showed far more disagreement

with the measured spectra. HSld et al. 65 suggested

that the disagreements were primarily temporal and

spatial resolution issues rather than a turbulence

modeling problem. Their paper illustrates a signil"

icant problem associated with assessing turbulence

models for unsteady flows; unless care is taken to

first assess grid and time step issues, the influence of

the turbulence model is almost impossible to evMu

ate. Because of the computational expense of doing

thorough resolution checks for unsteady problems,

these numerical issues are often left unresolved.
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Khorrami, Berkman, and Choudhari 7° and later

Nhorrami, Singer, and Berkman s° used the two

equation SST (k _) model of Menter 1°1 for 2 D
unsteady calculations of flow in the vicinity of a
leading edge slat. In their work the grid resolution

and time step were sufficiently fine for them to sus
pect that the turbulence model was responsible for

excessive damping of the large eddies in the slat
cove. Subsequent work by Khorrami, Singer, and
Lockard sl locally eliminated the turbulence produc
tion term in much of the slat cove and observed un

steady coherent vortex motions that closely resem

bled the PIV measurements reported in the work of
others.ll2, 140, 141

Scotti and Piomelli 121 assessed four low Reynolds
number turbulence models in pulsating channel flows

generated by oscillating the imposed pressure gra
dient. The apparent simplicity of these flows was

deceptive. In fact the pulsating flows represented
significant challenges to the URANS models. The
turbulence was out of equilibrium, in some cases

so much so that partial relaminarization occurred,
followed by a re transition. Somewhat surpris

ingly, the phase averaged streamwise velocity pro
files matched corresponding LES results reasonably

well when plotted in wall coordinates. However
the time averaged velocities of the URANS mod

els were always less than those determined from the
LES. Significant differences in the Reynolds shear

stresses and the turbulent kinetic energies were also
observed.

5.1.3 Composite LES/RANS Schemes
Recently, a class of composite models has been de

veloped for unsteady flows. These composite models

attempt to blend the unsteady capabilities of LES

with a method having grid requirements that are
more like those conventionally used in Reynolds

averaged Navier Stokes (I_ANS) calculations. A
composite model will typically involve a RANS tur
bulence model and HANS type grid in regions near

solid surfaces, where the resolution of turbulent ed
dies would require exceptionally fine grid resolution.

In these regions typical RANS models are usually
adequate for modeling the effects of turbulent flow.

Away from wall regions, where large unsteady flow
structures dominate the flow, the composite model
shifts from a RANS type turbulence model to a less

dissipative LES type subgrid scale model. Similarly,
away from wall regions, the gridding strategy will

shift from a RANS type grid to a grid amenable to
resolving at least some of the unsteady turbulence
scales of motions.

A variety of different composite models have been

proposed in the last few years. The composite

models go by different names and involve different

turbulence models for the RANS and LES regions
and different switching functions to shift between

the RANS and LES regions. Batten, Goldberg,
and Chakravarthy is proposed limited Navier Stokes;

Zhang, Bachman, and Fase1148 developed their flow
simulation methodology; Arunajatesan, Shipman,
and Sinha 4 developed the hybrid RANS LES. How

ever, the first and perhaps the most thoroughly
tested of these composite models has been the de

tached eddy simulation (DES) model of Spalart. 135
In its most common form, the DES model is imple

mented in combination with the Spalart Allmaras

(SA) turbulence model, laa although recently DES
results with Menter's SST model 1°1 have also been

published. 1as In either case, the switch from the

RANS region to the LES region is governed by a ra
rio of grid cell size with distance from the walh Vis

cous grid cells (high aspect ratio with lengths long
compared to the distance from the wall) characterize
the RANS regions. Small, approximately uniformly

sized grid cells far from solid surfaces characterize
the LES region. In theory, the RANS portion cor

rectly models the rather benign attached turbulent
flow regions, while the LES portion has sufficient

grid resolution and sufficiently reduced eddy viscosi
ties to simulate the large scale turbulent flow strut
tures.

The ease with which DES can be implemented in

a code is a mixed blessing. Upgrading an existing
SA model to accommodate the DES model requires

minimal additional logic. The triviality of the modi
fications required for this transformation has led nu
merous well intentioned users to perform and pub

lish DES like calculations. Unfortunately, it is easier
to obtain results than to verify and critically inter

pret them.

Proper grid resolution is always important in
CFD. However, with DES, the grid takes on new
significance, as the grid determines the switch be

tween the RANS region and the LES region. For
tunately, Spalart la6 provides some guidance for the

development of appropriate grids. Importantly, once
the RANS region of the flow is adequately resolved,

improved grid resolution should be undertaken 10
cal to the LES portion of the simulation, not glob

ally. Over resolving the RANS regions can displace
the RANS/LES switch over surface into the bound

ary layer, where the grid is likely to be insufficient
for a reliable LES calculation. Of course, continued
grid refinement will eventually lead to adequate LES

grids over the entire flow, although for aerodynamic
flows of commercial interest, solving the flow on such

a grid will likely be a decades long endeavor.
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WithaDESgridwelldesignedforaparticularap
plieation,globalgridrefinementislikelytoadversely
affectstheresults.Nikitinet al1°5discussesthese
circumstancesin thecontextof aseriesofchannel
flowcalculations.Althoughmodifyingtheswitching
function,asisdoneinothercompositeLES/RANS
methods,canalleviatesomeof thedeleteriousef
fects,a keyto successfulimplementationof these
methodsisgoingtoinvolvecarefulattentiontogrid
ding.

Anotherconcernwiththeimplementationofcorn
positemethodsisthenumericaldiffusion,especially
intheLESregionwherediffusionassociatedwiththe
modelisfarlessthanintheRANSregion.Insimula
tionsoftheunsteadyflowaboutasphere,Constan
tinescuandSquires3susedbothsecondorderand
ffth orderaccurateupwinddifferencesforthecon
vectiveterms.All otheroperatorswerediscretized
usingthreepoint,secondorderaccuratecentraldig
ferences.Onthesamegrid,theyfoundthat the
resultsof calculationswiththefifthorderaccurate
schemeagreedbetterwithaseparateLEScalcula
tionthantheresultsobtainedwiththesecondorder
upwindscheme.

Inlaterwork,Streletsla8wasconcernedaboutthe
diffusionofupwindschemesin theLES region and
the lack of stability of central difference schemes in
the RANS regions. To weaken the adverse effects

of upwinding in the LES regions, he used a hybrid
central/upwind approximation of the inviscid fluxes.

The hybrid is designed so that in the RANS region
the scheme is %lmost upwind" and in the LES re

gions the scheme is "almost centered."

Recent work at NASA Langley suggests that
second order central difference schemes can be used

for both the RANS and LES regions, although the

grid resolution must be chosen appropriately. The
key is to ensure that the turbulence model, and not
the numerics, controls the diffusion.

DES has been used in unstructured grid environ
ments, first by Forsythe, Hoffmann, and Dietiker. 48

Their research suggested that (/DES, the one addi
tional fi'ee parameter in DES (as compared to SA)
needed to be adjusted when DES is used in conjunc

tion with tetrahedrons. Because CDES weights a

measure of grid cell size in the RANS/LES switch
ing function, the need to adjust @Es when differ

ently shaped grid elements are used is not surprising.
Pelaez, Mavriplis, and Kandil 113 used the standard
value of (/DES for their unstructured grid calcula

tions and ultimately concluded that the value should
be determined by performing a decaying homoge
neous turbulence test case.

In spite of the many unanswered questions associ

ated with DES, in the right hands it can be a useful
tool for simulating unsteady complex flows. Travin

et al. 143 used DES for flows around a circular cylin
der. They explored the effects of grid, Reynolds

number, 2 D versus 3 D, DES versus URANS, and
laminar versus turbulent separation. An important

conclusion, first suggested by Spalart et al. TM is that
2 D DES calculations are not fruitfuh To achieve the

advantages of DES, a true LES should be done in

the LES regions which implies that the full 3 D flow
needs to be simulated. Without the third dimension,

important turbulence dynamics are inoperative. An
other important conclusion is that the benefits of
DES vary with the flow and the information desired.

In the case of a circular cylinder with laminar sepa

ration, DES proved itself superior to URANS, even
for obtaining time averaged quantities. However, for

the case of turbulent separation, the time averaged
quantities were the same, regardless of whether DES
or URANS was used. Hedges, Travin, and Spalart _

found that URANS performed almost as well as DES
for time averaged quantities on a four wheel landing

gear modeh The unsteady flow around the landing
gear appeared much more turbulent like in the case
of DES compared to URANS, but unfortunately un

steady flow data was not available for comparison.

5.2 Bottlenecks

In this section we will review some of the bottle

necks that are holding back further progress in re
solving turbulence modeling issues. In particular, we

will discuss experimental validation problems, con
sistency concerns for the composite methods, and

the high cost of the calculations.

5.2.1 Validation by Experiments

One of the great difficulties with new turbulence
models for unsteady flows is the lack of relevant ex
perimental data with which to validate the mod

els. As discussed earlier, different types of turbu
lence models with very different unsteady character

istics can provide very similar time averaged results.
Hence, if the time dependent behavior of the flow is

important in an application, then experiments that
provide time dependent data are indispensable.

Although flow past circular cylinders and spheres
has provided useful validation tests in the past, for
applications that involve flow actuators, particu

larly those that involve unsteady mass addition, new
types of experiments are required.

A typical unsteady flow actuator comprises a noz

zle or orifice that communicates with a cavity. The
cavity includes either a flexible membrane or a mov

ing walh Unsteady deformation of the flexible mem
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ber inside the cavity results in a local pressure

change that drives fluid through the nozzle and into

an external flow. In practical applications, the ex

ternal flow is turbulent without the presence of the

actuator; the flout inside the actuator is often a mix

of laminar and turbulent regions.

A good place to start with the experiments is

where a number of calculations of flow actuators

have begun, i.e., with actuators in no flow and lain

inar flow environments. Such experiments are cur

rently being performed at Langley. These experi

ments are time consuming and require attention to

details not typically recognized as important. For in

stance, the deformation of the flexible member may

need to be simulated or modeled with greater fidelity

than expected, time lags between the electrical ac

tuation of the flexible member and its actual me

chanical actuation need to addressed, and flow mea

surements in largely inaccessible locations, like the

actuator cavity, are desired.

The problems prove much more difficult when the

external flow is turbulent. In that case, character

istics of the external turbulent boundary layer must

be measured. In addition, the interaction of the flow

structures in the turbulent boundary layer with the

flow in the cavity must be characterized. Validated

criteria for choosing a particular turbulence model

ing approach for a specific type of actuator flow have

not been established. However, we speculate that if

a significant amount of the external flow is ingested

into the actuator cavity, then a full LES calculation

may be the only reasonable approach. On the other

hand. if the actuator is biased such that it does not

ingest the external flow, a DES calculation might be

able to calculate the relevant flow features. One con

cern with DES in this sort of application is that the

relevant unsteady flow regions are close to the wall;

hence the model rftay revert to its BANS character

istics in these regions and be too diffusive. Other

composite LES/RANS models may be more appro

priate for such flows. Although explorations of these

problems are ongoing at Langley, no definitive guid

ance can be provided to the CFD community yet.

5.2.2 Consistency Concerns

Gatski 5° raises questions as to the formal con

sistency of the composite methods. The compos

ite methods assume that the flow variables from the

BANS regions match smoothly with the correspond

ing variables from the LES regions. Gatski 5° shows

that such a match cannot be taken for granted, even

without considering the consistency issues associ

ated with the coupling of the temporal averages used

to derive BANS models and the spatial filtering used

to derive SGS models for the LES regions. To date,

these consistency issues have not been addressed by

the modeling community.

5.2.3 Calculation Cost

One of the problems with using a composite

LES/BANS method is that for the LES region to

be reasonably simulated, it needs to be not only

time dependent, but also three dimensionah With

out three dimensionality, the vortex stretching and

tilting mechanisms, which are so important in real

flows, cannot be appropriately simulated. The ne

cessity to do 3 D calculations dramatically raises the

costs of the calculations, both in terms of computer

memory and in terms of run time. Turnaround time

for circular cylinder calculations on eight processors

of an SGI Origin 2000 can easily be multiple weeks.

Grid and time step studies therefore turn the activ

ity into a very long process, even for such a relatively

simple flow. The time can be significantly reduced

through the use of more extensive parallel process

ing, but the parallel efficiency must be maintained

over approximately 100 processors for the calcula

tion turnaround times to become sufficiently short

for good systematic studies to be performed. Those

like Travin et al. s4a who have performed such studies

have added greatly to our understanding of the per

formance of these methods. More work along those

lines needs to follow.

5.3 Langley Effort

The efforts at Langley in this area have concen

trated on the development of appropriate validation

experiments and also in doing some of the careful

studies needed to calibrate the performance of DES

with different codes. Some additional developmen

tal work on new families of composite LES/RANS

models has been funded by NASA Langley Research

Center. Although the DES model has by far the

greatest following, and therefore the most thorough

testing, some aspects of the model raise questions

as to its suitability for actuator type computations.

In particular, the fact that the boundary between

the BANS region and the LES region is entirely dic

tated by grid size and distance fi'om the wall makes

the simulation of near wall recirculation regions dig

ficult. Other versions of composite models may work

better in flows where near wall recirculation regions

are anticipated.

Another important role played by Langley is to

act as a clearinghouse for ideas related to unsteady

turbulence models. Langley researchers can provide

appropriate suggestions and criticism of emerging

concepts so that the developers can address these

concerns early in the models' development. As an

example of this interaction, the consistency concerns
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discussedearlierarenowbeingaddressedinatleast
onenewmodelunderdevelopment.

At NASALangley Research Center a concerted

effort is underway to measure and compute the flow

in active flow control devices. This effort brings to

gether experimentalists, turbulence modelers, and

computationalists who all have been working to

gether to develop appropriate techniques for the sire

ulation of actuator flows.

6 Actuator Boundary Conditions

6.1 Overview: Current Practices

Interest in active flow control for drag or noise

reduction, flow vectoring, mixing enhancement, and

separation control has stimulated the recent develop

ment of innovative synthetic jet actuators that ere

ate localized disturbances in a flowfield. Synthetic

jets are generated by a dynamic fluid actuator con

sisting of a cavity enclosed by one (or more) moving

diaphragm(s) driven into transverse oscillations at

their resonance frequency. The distinctive feature

of these actuators is that they have minimal power

requirements and have jet like characteristics with

out the need for mass injection. Although net mass

injection into the overall system occurs over each

cycle of operation, the momentum transfer into the

embedding flow is nonzero. These features enable

synthetic jets to effect significant global modifica

tions in the embedding flow on scales that are one

to two orders of magnitude larger than the charac

teristic length or force scale of the jets themselves.

In recent

years, because of considerable improvements in corn

puter resources, more attention is being devoted to

numerical simulation and optimization of synthetic

jet actuators. 82, 46, 58, 33, 147, 29, 64, 89, 118. 77, 87 The

presence of several temporal and spatial scales and

moving boundaries in the problem makes simula

tion of such unsteady flows computationally very ex

pensive. To reduce the computational cost, several

approaches have been developed. All the methods

can be divided into two classes: 1) simplified models

without simulation of the flow inside the actuator,

and 2) numerical simulation of both the exterior and

cavity flows.

In the first class of methods, a synthetic jet gener

ated by harmonic motion of the actuator diaphragm

is modeled by using simplified boundary conditions

imposed at the orifice exit. In the work of Donovan,

Kral, and Cary, 82 and Kral et al. 4_, the flow within

the cavity is not calculated and the perturbation to

the flowfield is introduced through the wall normal

component of velocity at the orifice exit

v(x,y = 0,t) -- VA(x)sin(wt) (21)
u(x, y = 0, t) = 0

where x and y are the flow streamwise and cross

stream directions, respectively. Different spatial

variations of Va(x) over the orifice have been con

sidered. Numerical experiments 4< 82 indicate that

a "top hat" distribution most closely matches the

experimental data. A modified boundary condition

on the pressure at the orifice is introduced through

a consideration of the normal momentum equation.

Taking into account time harmonic velocity pertur

bations, this condition, obtained under the assump

tion that the flow is incompressible, becomes

Op
- (22)

Oy

The numerical simulations based on the boundary

condition (eqs. 21 and 22) show good qualita

tive agreement with the experiments. 12a, 122, 131 A

similar approach modeling the actuator as a blow

ing/suction boundary condition, which can be fully

specified in advance of the calculation, is used by

others.29, 58, _4, 89

An alternative technique for modeling synthetic

jet actuators has been proposed by Carpenter et al. aa

This theoretical model for the actuator is based on

classic thin plate theory for the diaphragm dynam

ics. The flow through the orifice is modeled using

unsteady pipe flow theory. This approach is based

on the assumption that streamlines in the orifice exit

are parallel to its axis, which is an adequate approxi

marion if the length to diameter ratio is much larger

than unity. The governing equation for the orifice

flow is given by

pvlvl @ o
2Z - @ (23)

where y and r are the axial and radial coordinates,

respectively, v is the axial velocity, 1 is the orifice

length, and density p is taken to be the instanta

neous mean of the cavity and external densities. The

inertial term ,ovvv is modeled approximately by the

second term on the left hand side of equation (23).

The dynamics of the air in the cavity is ignored and

the pressure there is calculated by means of the per

feet gas law. The cavity and the external boundary

layer flowfields are linked by requiring continuity of

velocity and pressure at the orifice exit. In Carpen

ter, Lockerby and Davies, 3a only the blowing phase

of the actuator dynamics has been studied.
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Thesecondclassofmethodsisbasedonadirect
numericalsimulationof theentireprobleminclud
ingtheflowinsidetheactuator.Rizzetta,etal. sis

solve the unsteady compressible Navier Stokes equa

tions in the external region, the cavity itself, and

the throat of the actuator on separate grids that are

linked with each other through a Chimera method

ology. The membrane motion is simulated by vary

ing the position of appropriate boundary points. As

follows fl'om the numerical calculations presented in

reference [H8], the internal cavity flout becomes peri

odic after several cycles. Therefore the velocity pro

file across the jet exit at each time step was recorded

and was used as a boundary condition in subsequent

runs involving the external domain only. For corn

putations that consider only the upper exterior do

main, the transverse and span wise velocity compo

nents (orthogonal to jet axis) are set to zero and the

inviscid normal momentum equation: expressed as

av _ (Ov (24)ov e +

is used to establish the pressure. The orifice exit

density is extrapolated from the interior solution.

This approach provides more accurate description

of the flow details at the orifice than the simplified

boundary condition of equations (21) and (22). Sire
ilar direct numerical simulation of the external and

cavity flows has been performed by Joslin et al. rr
and shown good agreement with experimental re

suits.

To avoid the integration of the Navier Stokes

equations on a moving grid, an alternative technique

is used by Lee and Goldstein. 8r The main idea of the

method is to impose a localized body force along de

sired points in the computational mesh to bring the

fluid there to a specified velocity so that the force has

the same effect as a solid boundary. The desired ve

locity is incorporated in an iterative feedback loop

to determine the appropriate force. For a moving

boundary with velocity VA(X,/), an expression for

the body force is

t

VA)d '+9(v VA) (25)
0

where v is the fluid velocity, and a and fl are

user defined constants that are negative and can be

treated as the gain and damping of the force field

with dimensions of M/(LaT 2) and M/LaT, respec

tively. This approach allows a moving diaphragm

without using a time dependent coordinate trans

formation.

6.2 Bottlenecks

In spite of the fact that the methods mentioned

above have successfully been used for modeling syn

thetic jet actuators, several issues persist. One of

the main drawbacks of the first class of methods is

that the simplified boundary conditions do not pro

vide conservation of mass, momentum, and energy

through the actuator orifice. Because these methods

use the normal momentum equation to calculate the

pressure, whereas the other quantities are extrapo

lated or prescribed analytically, this boundary con

dition does not satisfy the governing equations at the

boundary and, therefore, does not provide the con

servation properties. Another disadvantage of the

boundary condition [eqs. (21) and (22)] is its in

ability to account for changes in the pressure field

caused by the interaction of the external boundary

layer and actuator. Furthermore, as has been shown

in Lee and Goldstein, sr the real streamwise velocity

profile and the velocity component in the cross flow

direction are far from the analytical expressions of

equation (21).

The main problem associated with the second

class of methods is complexity/cost. The numerical

calculation of the cavity flow requires a large number

of grid points. For geometries fitted with multiple

actuators, grid requirements for the actuators could

exceed those of the exterior flow, and would con

tribute extensively to the computational cost. An

other consideration is the actuator Mach number,

which varies from 0.001 (near the diaphragm) to 0.1

(at the orifice exit). This variation of the flow" pa

rameters from fully incompressible in the actuator

to fully compressible in the exterior region imposes

very severe requirements on a numerical method and

increases the algorithm complexity.

6.3 Langley Effort

As follows from the literature overview presented

above, the research in the area of active flow control

is of empirical nature, mainly due to the cornputa

tional cost involved and lack of confidence in compu

tational methods for such complex time dependent

flow's. A strong effort s4r is currently underway

at Langley toward constructing a new methodology

that combines the accuracy and conservation prop

erties of the simulation methods with the efficiency

of the techniques based on simplified boundary con

ditions. In contrast to the methods found in the

literature, the new approach uses a reduced order

model of 2 D or 3 D actuators. In other words,

the multidimensional actuator is simulated by son

ing the time dependent 1 DEuler equations similar

to those used for the quasi one dimensional nozzle
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Figure 3. Comparison of the mass rate errors
for the 2-D actuator problem obtained with the

quasi-l-D actuator modal and the nonconservative
boundary condition (21, 22).

problem. The simplified actuator model has several

advantages. First, this approach provides conser
vation of not only mass, but also momentum and
energy. Second, the new method is much more effi

cient in terms of computational time compared with
the 2 D or 3 D numerical simulation of the flowfield

in the actuator. Third, this reduced order model
retains some multidimensional features of the realis

tic actuator that are governed by the area variation
of the quasi one dimensional nozzle, and, therefore,
can be used for qualitative study of the resonance
characteristics of the actuator. As follows from the

comparison presented in figure (3), the conventional
boundary conditions based on the normal momen
tuna equation do not provide mass conservation. The

maximum mass rate error, which occurs during the
suction stage, is of the order of 15 percent if the

normal momentum equation is used as a boundary
condition for pressure. In contrast to the conven
tional approach, the new method provides conserva

tion of mass, momentum, and energy. As a result,

the mass rate error is reduced by one to two orders
of magnitude compared with that obtained with the

blowing/suction boundary condition [eqs. (21) and
(22)]. These preliminary results are very encourag
ing. In our future work, we will focus on calibration

of the new methodology with readily available ex
perimental data and numerical simulation of time

dependent flows encountered in active flow control

environment.

7 Conclusions

The current status of time dependent algorithms
is presented. Special attention is given to algo
rithms used to predict fluid actuator flowfields. The

overview begins by considering algorithmic issues

that could greatly improve the temporal efficiency
of actuator simulations. The general state of time
dependent turbulent models for nonstationary flows

is then assessed. Finally, an efficient new fluid actu
ator boundary condition is presented. Each section

begins by describing the current state of the art in
cluding notable impediments in the field, and con

cludes with a summary of current Langley efforts.
Profound improvements in the efficiency of tempo

ral algorithms could be achieved in the next decade.

Notable leverage in time dependent methods exists
in the following algorithmic areas: 1) implementa

tion of high order (p _> 3) temporal schemes, 2)
implementation of high order (p _> 3) spatial algo

rithms, and 3) convergence acceleration techniques
for complex high Reynolds number flows. Signifi
cant impediments exist in each of these three cate

gories.

High order schemes need huge time steps to uti
lize their full potential. Algebraic solvers with rapid,

time step independent, convergence rates are neces
sary for these schemes. The principal impediment
facing the implementation of high order temporal

schemes is the need for robust and rapid algebraic
equation solvers. Error estimation, variable time

stepping and automated iteration termination will
immediately follow. Current fourth order schemes

are asymptotically close to being optimal, and fur
ther increases in efficiency are difficult to obtain.

High order spatial operators must be flexible

enough to accommodate complex geometries, grid
adaptation and nonlinear instability. Methods uti

lizing compact locality (unstructured methods) are
advantageous when addressing complex geometries
and grid adaptation. Unstructured high order for

mulations include Finite Elements (FE), tc exact Up
wind Finite Volume (FV), or k exact ENO FV. The

principal impediment facing the implementation of
high order spatial operators is their lack of nonlinear

stability resulting from unresolved features and dis
continuities. Extensive research is currently under
way within the FE community. Some formulations

possess a nonlinear L2 stability property. It is still
unknown whether this stability is a strong enough

for general purpose solvers, or whether stronger sta

bility conditions (TVD, TVB, ENO) must be put
sued.
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A wide variety of different iterative methods are

currently used. Nevertheless, the convergence rate

of current state of the art iterative solvers is poor.

Complex high Reynolds number 3 D simulations

converge at per cycle rates in the range 0.96 0.98.

The principal impediments for rapid convergence are

high aspect ratio cells in the turbulent boundary lay

ers, and low Mach number regions in the flow.

Conventional URANS turbulence models are not

very accurate for nonstationary turbulent flows. A

new class of composite LES/RANS schemes has been

developed to address these inadequacies. Among

these is the detach eddy simulation (DES) approach,

and is currently being verified and validated. The

DES scheme is very expensive because is requires

a full 3 D time dependent simulation of the flow in

question. The principal impediment facing all corn

posite approaches is validation against high quality

experimental data. The accuracy and consistency of

the blended region between the outer LES and inner

RANS regions is a concern with composite methods.

The accuracy of this region is extremely important
in fluid actuator simulations.

An optimistic estimate indicates that successful

research could improve overall efficiency by O(10 s/2)

for temporal algorithms, by O(10 a/2) for spatial al

gorithms, and by O(103/9) for convergence aecelera

tion. Improvements in the modeling of fluid actua

tors could account for a factor of two. Moore's law

predicts that increases in computer hardware will

yield O (101) improvements. All these effects can be

combined in a multiplieative sense to yield poten

tial improvements of O(104). Improvements of this

magnitude would allow us to do 3 D optimization

studies based on DES turbulence models, including

fluid actuator design and resonance, and actuator

placement and coupling studies.
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